數據分析是指通過建立審計分析模型對數據進行核對、檢查、復算、判斷等操作,將被審計單位數據的現實狀態(tài)與理想狀態(tài)進行比較,從而發(fā)現審計線索,搜集審計證據的過程。
數據分析的目的與意義
數據分析的目的是把隱沒在一大批看來雜亂無章的數據中的信息集中、萃取和提煉出來,以找出所研究對象的內在規(guī)律。
在實用中,數據分析可幫助人們作出判斷,以便采取適當行動。數據分析是組織有目的地收集數據、分析數據,使之成為信息的過程。這一過程是質量管理體系的支持過程。在產品的整個壽命周期,包括從市場調研到售后服務和最終處置的各個過程都需要適當運用數據分析過程,以提升有效性。例如J.開普勒通過分析行星角位置的觀測數據,找出了行星運動規(guī)律。又如,一個企業(yè)的領導人要通過市場調查,分析所得數據以判定市場動向,從而制定合適的生產及銷售計劃。因此數據分析有極廣泛的應用范圍。
數據分析的功能
數據分析主要包含下面幾個功能:
1. 簡單數學運算(Simple Math)
2. 統(tǒng)計(Statistics)
3. 快速傅里葉變換(FFT)
4. 平滑和濾波(Smoothing and Filtering)
5. 基線和峰值分析(Baseline and Peak Analysis)
數據分析的類型在統(tǒng)計學領域,有些人將數據分析劃分為描述性統(tǒng)計分析、探索性數據分析以及驗證性數據分析;其中,探索性數據分析側重于在數據之中發(fā)現新的特征,而驗證性數據分析則側重于已有假設的證實或證偽。探索性數據分析:是指為了形成值得假設的檢驗而對數據進行分析的一種方法,是對傳統(tǒng)統(tǒng)計學假設檢驗手段的補充。該方法由美國著名統(tǒng)計學家約翰·圖基(John Tukey)命名。定性數據分析:又稱為“定性資料分析”、“定性研究”或者“質性研究資料分析”,是指對諸如詞語、照片、觀察結果之類的非數值型數據(或者說資料)的分析。
數據分析步驟
數據分析有極廣泛的應用范圍。典型的數據分析可能包含以下三個步:
1、探索性數據分析,當數據剛取得時,可能雜亂無章,看不出規(guī)律,通過作圖、造表、用各種形式的方程擬合,計算某些特征量等手段探索規(guī)律性的可能形式,即往什么方向和用何種方式去尋找和揭示隱含在數據中的規(guī)律性。
2、模型選定分析,在探索性分析的基礎上提出一類或幾類可能的模型,然后通過進一步的分析從中挑選一定的模型。
3、推斷分析,通常使用數理統(tǒng)計方法對所定模型或估計的可靠程度和精確程度作出推斷。數據分析過程實施
數據分析過程的主要活動由識別信息需求、收集數據、分析數據、評價并改進數據分析的有效性組成。
一、識別信息需求
識別信息需求是確保數據分析過程有效性的首要條件,可以為收集數據、分析數據提供清晰的目標。識別信息需求是管理者的職責管理者應根據決策和過程控制的需求,提出對信息的需求。就過程控制而言,管理者應識別需求要利用那些信息支持評審過程輸入、過程輸出、資源配置的合理性、過程活動的優(yōu)化方案和過程異常變異的發(fā)現。
二、收集數據
有目的的收集數據,是確保數據分析過程有效的基礎。組織需要對收集數據的內容、渠道、方法進行策劃。策劃時應考慮:
①將識別的需求轉化為具體的要求,如評價供方時,需要收集的數據可能包括其過程能力、測量系統(tǒng)不確定度等相關數據;
②明確由誰在何時何處,通過何種渠道和方法收集數據;
③記錄表應便于使用;
④采取有效措施,防止數據丟失和虛假數據對系統(tǒng)的干擾。
三、分析數據
分析數據是將收集的數據通過加工、整理和分析、使其轉化為信息,通常用方法有:
老七種工具,即排列圖、因果圖、分層法、調查表、散步圖、直方圖、控制圖;
新七種工具,即關聯(lián)圖、系統(tǒng)圖、矩陣圖、KJ法、計劃評審技術、PDPC法、矩陣數據圖;
四、數據分析過程的改進
數據分析是質量管理體系的基礎。組織的管理者應在適當時,通過對以下問題的分析,評估其有效性:
①提供決策的信息是否充分、可信,是否存在因信息不足、失準、滯后而導致決策失誤的問題;
②信息對持續(xù)改進質量管理體系、過程、產品所發(fā)揮的作用是否與期望值一致,是否在產品實現過程中有效運用數據分析;
③收集數據的目的是否明確,收集的數據是否真實和充分,信息渠道是否暢通;
④數據分析方法是否合理,是否將風險控制在可接受的范圍;
⑤數據分析所需資源是否得到保障。